Wpływ astronomii greckiej na powstanie geometrii

Jan WASZKIEWICZ, Wrocław

Praca ta stanowi wyjek z obszernej całości [44], stanowiącej z kolei jedynie część cyklu [43]. Zadaniem całego cyklu jest przedłożenie kulturowych uwarunkowań genety matematyzki [przy czym przyjmuje się, i uzasadnia, że nauka ta ma magie początki, datowane na okres działania Talesa i jego szkoly filozoficznej]. We wspaniałej części [44] będała się zależności powstającej geometrii od jej otoczenia, uwzględniając geodezje, astronomiczne, filozofię i kosmologię. Chodzi przy tym o wpływ, jaki mogły mieć te dziedziny na ukasztowowanie się specyficznie greckiego pojęcia przestrzeni, którego ostateczny kształt kształta znamy z „Elementów” Euklidesa.

Dalej w swych przypuszczeniach idzie E. Cassirera [2], który uważa, że to w astronomii babilońskiej doszło do istotnego intelektualnego przełomu, który doprowadził zarówno do powstania idei geometrycznych, jak i dedukcyjnych. Pobieł on, że „Jego wielkiego uogólnienia, które doprowadziło do pojęcia porządku kosmicznego (który, zgodnie z wcześniejszymi wywodami tego autora, implikuje pojęcie przestrzeni – J.W.) dokonano w historii kultury po raz pierwszy w astronomii babilońskiej. Można tu znaleźć pierwszy wyraźny dowód istnienia myśli przekraczających sfere konkretnego, praktycznego życia człowieka, myśli, która ma odwagę objąć wszelką mogącą ją przesunać cały Wszeszyświat” (s.115).

Nie będziemy tu podejmować szczegółowej dyskusji z tezą Cassirera, w której widać można sporo dość przesady. Ani bowiem myśli babilońska w zakresie astronomii nie ma tak abstrakcyjnego charakteru, jak chciałby on widzieć, ani
nie można w niej upatrywać aż tak wyjątkowego podejścia do zjawisk kosmicznych. To co wiemy o megalitycznych budowlach astronomicznych, o lejącej u ich podstaw wiedzy astronomicznej i jej powiązaniach z geometrią, kiedy nam ocenić, że twórcy tych budowli posunęli się we wskazanym przez Cassireiera kierunku dalej niż astronomowie babilońscy [39], s. 15 – 25. Wreszcie, jeśli chodzi o stronę pojęciową, to perska religia kosmiczna mogła mieć większy wpływ na greckich filozofów niż babilońskie algorytmy (por. [41], rozdz. V).
Warto może przyczyćć się tu opinię F.M.Cornforda, że „bez względu na to, czy przyjmujemy hipotezę bezpośredniego wpływu Persji na Jonów w VI wieku, czy też nie, żaden badacz myśli orficznej i pitagorejskiej nie może nie spostrzec między nimi a religią perską podobieństw tak bliskich, że możemy oba te systemy uznać za wyraz jednej i tej samej koncepcji życia i posługując się jednym z nich w interpretacji drugiego” (cyt. za [18], s. 279). Jest to ważne stwierdzenie ze względu na rolę obu tych nurtów w greckiej filozofii (co mocno eksponuje A.Krokielowicz), a pitagorejszczyków również w matematyce. Zresztą tezę Cornforda można rozciągnąć na koncepcje filozofów od Empedoklesa, Anaksagorasa i Demokryta do Platona ([18], s. 280).

Nie będziemy wracać do tej kwestii, szeroko omawianej w [45], stwierdzimy jedynie, że w chwili obecnej i interpretacje Neugebaura i wynikające z nich oceny poziomu matematyki babilońskiej uznać należy za niedokładne.

Jest jeszcze jeden powód, dla którego tezę o wpływie astronomii babilońskiej na powstanie greckiej matematyki należy traktować z dużą ostrożnością. Jest nim zupełnie odrębny charakter astronómii w oba tych kulturach. Astronomia babilońska miała przede wszystkim numeryczny charakter, grecka geometryczny. Przejęcie dokonane między jedną a drugą jest więc dokładnie tym samym przewrotem intelektualnym, który usiłujemy wyjaśnić w tej pracy.
Dla określenia charakteru greckiej astronomii VI w. p.n.e. oraz wkładu jońskich filozofów w jej rozwój, zbieramy i pokrótnie przedstawiamy dotyczące jej dane. Interesować nas przy tym będzie przede wszystkim kwestia prowadzenia i sposobów użycia pierwszego i podstawowego narzędzia obserwacji i pomiarów astronomicznych jakim był gnomon. Zgodnie bowiem ze stosunkowo niedawnymi ustaleniami A.Szabó użyte gnomona wiąże się z wypracowaniem geometrycznego obrazu Wszechświata oraz rozwojem badań geometrycznych ([32], [33], [35]).

Przypomnijmy, że gnomon jest to pionowy prin, którego cień służył do obserwacji ruchu Słońca po nieboskalnie i zamianie czysto jakościowych obserwacji tego ruchu w pomiary długości i położenia cienia. Za pomocą gnomona można było badać zarówno ruch dniowy Słońca, jak też jego zmiany w cyklu rocznym. W pierwszym przypadku, gnomon pełni role zegara słonecznego (horologium). W drugim przypadku (gnomon jako heliotropion) gnomon służył do wyznaczania dni letniego i zimowego przesilenia, kiedy to cień popołudniowy jest najdluzszy bądź najkrótszy. Przy zastosowaniu subtelniejszych technik możliwe było również ustalenie dni równoczynności. Pomiary te miały ważne kalendarzowe i kultowe znaczenie. Wiązało się z nimi wyznaczanie na nieboskalnie ważnych dni: zwrotnika i równika, oraz ekliptyki – koła, po którym porusza się Słońce. Ma to oczywiste znaczenie dla budowy obrazu Wszechświata i rozwoju pomiarów astronomicznych. Wreszcie zrzuaczenie na kule ziemskie tych właśnie dni, innych równoleżników i południków (do których wyznaczania również pomocny był gnomon) oraz wyznaczanie szerokości geograficznej (również za pomocą gnomona) były ważnymi kwestiami matematycznej geografii (i kartografii), która również rozwijała się w Grecji.

Oczywiście większość wymienionych wyżej zastosowań gnomona opracowano w toku długiego rozwoju wiedzy astronomicznej, geograficznej i geometrycznej. Początek tej drogi odnaleźć można w rozlicznych kulturach używających zegara słonecznego ([35], s.34), jej zakończenie stanowi wiedza o budowie zegarów słonecznych o znacznej dokładności i mających kalendarzowe zastosowania, którą zawarli Witrwiusz w IX księgi swojego dzieła o architekturze [48]. Jak świadczą o tym źródła starożytne, wkład jońskich filozofów (zwłaszcza Anaksymandra) w rozwój teorii i praktyki użycia gnomona był znaczący. A.Szabó, w cytowanych wyżej pracach podjął próbę bliższego jego określenia. W dalszym ciągu przytoczymy jego opinie, miejscami je moderując (i wzmocniając, jak się wydaje, argumenty na ich rzecz).

Punktem wyjścia greckiej astronomii, jak zresztą astronomii w ogóle, były obserwacje zjawisk niebieskich mających kultowe i kalendarzowe (ważne w agrotechnice) znaczenie. Przykładem może być katalog użytecznych dla rolników zjawisk między pewnymi zjawiskami astronomicznymi, a optymalnymi okresami dla podejmowania prac gospodarczych ([14], w.283,417,564,597; por.[36], s.159 – 160, [41], s.11 – 13). Taki zakres wiedzy, dotyczący głównie wschodów i górowania różnych gwiazd i gwiazdzbiorów oraz przesileń Słońca i faz Księżyca, dobrze podsumowuje Pliniusz: „Cala nasza obecna wiedza o niebie, pożyteczna jest dla pracy na roli, opiera się głównie na obserwacji wschodu gwiazd stałych, ich zachodu i czterech najważniejszych punktów: dwóch tropików lub przesileń i dwóch równocznosci, które dzielą rok na cztery sekwencje, zgodnie z porami roku” ([28], XVIII, 25). Siedem wieków oddzielających Pliniusza Starzego od Hejzoa świadczy, że ten zasób wiedzy
astronomicznej był i bardzo stary, i stabilny. Tego typu obserwacje są szeroko rozpowszechnione. Leżały one w podstaw konstrukcji megalitycznych takich jak Stonehenge. Dotychczas ich teorie spotykały się w źródłach egipskich i babilońskich (dane babilońskie są szersze i dokładniejsze). Jeśli więc coś wyróżnia wiadomości zawarte w poemacie Hejzoga, to mniejszy stopień precyzji i częstotliwy charakter. Nikt zresztą nie wskazuje, by Grecy w tym czasie (VII w. p.n.e.) dysponowali jakakolwiek możliwością ujęcia tej wiedzy. Dodatkowe znaczenie może mieć fakt, że mamy tu do czynienia nie z zapisem ciągów liczb, ale z opisem przeznaczonym do przekazu ustnego – ujętym w postać wiersza (i wtopionym w większą poetyczną całość). Poezja, przemawiająca do wyobraźni, zachęcała do czynienia z niej użytku, a więc również do tworzenia mentalnych modeli opisywanych zjawisk.

Wspominajmy jeszcze o jednym zakresie obserwacji astronomicznych, który miał duże praktyczne znaczenie – chodzi o dane ułatwiające żeglugę nocną. Już w „Odyseji” można spotkać informacje o kierowaniu się przez Odyseusa gwiazdami (zawsze pewne znaczenie ma informacja, że płynący na tratwie Odyseusz patrzył „w Niedźwiedzicę, która też z wozu Wozenna: ona się w miejscu obraca i śledzi Oriona, a jedyna z gwiazd nie kapie się w Oceanie” [15, pieśń V, s.132]).

Na takim tej dość prostych i szeroko rozpowszechnionych obserwacji astronomicznych, służących praktycznym celom rozpatrywać trzeba domniemany wkład Talesa (już wspomnianego przez Greków za twórcę astronominii) i jego uczniów w rozwój tej dziedziny wiedzy.

Co wiemy na ten temat? Jak we wszystkim, co dotyczy pierwszych filozofów, zdani jesteśmy na informacje późne, często sprzeczne ze sobą, budzące rozliczne wątpliwości. Sprobujmy wypuścić z nich racjonalne jadro, pomijając zarówno wątpliwe szczegóły, jak i rekonstrukcje dokonywane przez późniejszych interpretatorów. Pożegnamy się przy tym podejściem, zaproponowanym i intensywnie wykorzystywanym w [44]. Przypominając, że struktura poszczególnych dokonań konkretnym myślicielom filozoficznej szkoły jest bardziej wątpliwa, niż przypuszczenie ich całej grupie, będziemy na dokonaniu Talesa, Anaksymaneda i Anaksymandra patrzeć jako na pewną całość. Dodatkowo będziemy się starali wiazać astronomiczne i geometryczne ich dokonania. W ten sposób uzyskuje się pewien większy (nigdy przy jego rozbijaniu) zasób wiadomości o dokonaniach szkoły, który powinien być łatwiejszy do analizy i prowadzić do silniej ukazanych wniosków.

Zacznijmy od przeglądu wiadomości o interesujących nas filozofach, jako astronoma. Najwięcej źródła mówi o astronomicznych dokonaniach Talesa (p. [12], s.137 – 139, [6], l.1, 22 – 24). Mówi się więc zarówno o jego wielkim osiągnięciu, jakim było przewidzenie zaćmienia Słońca (prawdopodobnie 28 maja 585 r. p.n.e.), o dokonanie przez niego reformie astronomena egipskiego, o opracowaniu metod wyznaczania dni przesilenia i równocen, zaobserwowania ruchu Słońca od zimnika do zimnika, wyznaczeń długości roku (na 365 dni) i pół roku, ze stwierdzeniem nierównych ich długości oraz szereg odkryć, które już niemal wątpliwości były dokonane znacznie później. Jest wreszcie i urocza anegdotą o Talesie zapatrzonym w gwiazdy, który przez to wpadł do dułu, a towarzysząca mu służba skomentowała to złośliwie: „Ty, Talesie, nie mogę dostrzec tego, co jest pod nogami, chciałbyś dostrzec to, co na niebie?” [6], l.1, 14]. Ta opowieść, w wersjach różniących się szczegółami, była wielokrotnie przytaczana. Sam Digoenes Laertius przytacza ją jeszcze raz [6], l.4], pisze o niej Platon ([27], 174 a) i Ezos (Bajka 40). Zarówno popularność tej opowieści, jak i mnogość wersji znamienne są dla całej naszej wiedzy o Talesie.

Znaczące są dokonania astronomiczne Anaksymaneda. Wśród nich wymienia się głównie stworzenie wielosferycznego, geocentrycznego modelu Wszechświata (co do kształtu przypisywanego przez niego Ziemi informacje są sprzeczne), określenie rozmiarów Słońca, Księżyca i odpowiednich sfer niebieskich. Przypisuje się mu też wprowadzenie gnomona i określenie za jego pomocą pór

Zauważmy, że przytoczone powyżej informacje nie układa się samorzutnie w spójny obraz. Rzecz zanuda, która w widocznym obszarze nie jest chronologia. Przypisywane Anaksymenu metod wyznaczania dni równonocy (przeznaczenia na pewno były wyznaczane wcześniej), tymczasem trudno sobie wyobrazić, co innego było przedmiotem przypisywanych Talemowi rozwiązań (nie mówię już o stwardzeniu nierówności pół roku, co wymagało dostatecznie dokładnych technik pomiarowych). Wreszcie, nieporozumieniem jest, o czym świadczy przytoczony wcześniej cytat z Homer, przypisywane Talemowi odkrycie ruchu Małej Niedźwiedzicy. Również w Odyszei można znaleźć, wprawdzie nie do końca jasny, fragment mówiący o zwołaniu: „Jest pewna wyspa, nazywana Syros (… powierzchni Ortygos, gdzie Słonec sercza” mówi w XV księciu pastor św. Eumajos (XV, s.302).

Oczywiście, przy zaprogramowanym wyżej łącznym przetwarzaniu całego tekstu, przesunięcia w czasie i błędną kolejność poszczególnych dokonań tracą na znaczeniu. Obraz zaś, który wyłania się z powyższego wykazu jest niezwykle.

Byszem nieznane najważniejsze było zbudowanie geometrycznego, sferycznego modelu wszechświata. Być może był to model jednolity, być może wieloosnowy, a może być nie był to jeden model, ale kolejno poprawiany jego wersje (z materialnym planetyarnim wlaźnicą). Nie miał to w pewno model ten uważany zwrotniki, równik i bieguny (wydaje się, że czas to dotyczyć mogło „odkrycie Małej Niedźwiedzicy” przez Talese), uważał ruch stałych gwizd (o uwzględnieniu w nim ruchu planet wiadomo niewiele) oraz Księżyc i Słońca. Czy, jak chcieli niektórzy, już Talese zrozumiał, zastosował ekwipunek, w ten chyba można wątpić, choć wiadomość o przewidzeniu zwołania Słońca może być sładem baczniejszych i bardziej systematycznych obserwacji ruchu największych ciał niebieskich. Zienia znajdowała się w środku Wszechświata. Ruchłość Ziemii, będąca naturalną konsekwencją takiego modelu, nie była czynna w modelu uwzględnianym, choć Diogenes Laeitios twierdził, że Anaksymander był tego faktu świadome, a inni autorzy przypisywali tę świadomość i Taleseowi. Informacje na ten temat są jednak zbyt rozbieżne by jegomocne. Ruchowość Ziemii leży jednak w logice modelu i dokonanie tej poprawki było tylko kwestią czasu.

Podkreślmy raz jeszcze, że geometryczny model Wszechświata, czy choćby pierwsze kroki w jego kierunku, uznać należy za istotę światłości greckiej astronomii. Jak wskazałyśmy wyżej, różnice tej astronomii i, powiedzmy egipskie czy babilońskie, widoczne są w dokonaniach Talese i jego uczniów. Nie wyczerpuje to listę ich osiągnięć.

Ważną kwestią, która mogła być motorem powszechnych badań i znajdowanie odbici w przytoczonych danych, był problem kalendary. Jego jeździeckie, i tu wnikliwie pewien wkład. Okreslenie długości roku z dobrą dokładnością, łącząc się z przejściem od kalendary księciowego do słonecznego, to ważne osiągnięcie, które nie znane Egipcjanom (por. [36], i [41]). Jeszcze ważniejsze byłyoby (gdzie istotnie miała miejsce) stwierdzenie nierównych odstępów między początkami astronomicznych pół roku. Faktem ten nie był bowiem znany współczesnym astronomom asyryjskim ([40], s.86, [41], s.80 – 83). Obydwa te osiągnięcia razem wzięte świadczyć by mogły o samodzielnym rozwoju
greckiej astronomii owego okresu, jak modelowe jej aspekty świadczą o jej swoistym charakterze.

Innym, oprócz kwestii kalendarzowych, motorem badań astronomicznych była astrologia. Mające agrotechniczne znaczenie obserwacje, o których pisaliśmy uprzednio, a które dość szeroko uwzględnił Herodot w swoim poezmnie, sprzyjały wytwarzaniu koncepcji astrologicznych. Przyporządkowanie zjawisk astronomicznych okresem korzystnym dla pewnych czynności mogło sprzyjać przekonaniu o istniejącym tu związku przyczynowym. Rozszerzenie takiego przekonania na inne dziedziny życia mogło stać się przyczyną poszukiwania w układach gwiazd przesłanek dla pomyślności (lub niewygodności) różnych działań. I na odwrót, pojawienie się nietypowych zjawisk mogło powodować przewidywanie czy jakieś możliwości przyszłościowych (i różnica) astronomów. Przyspieszenie przewidywania i jasność w zakresie astronomicznej przyszłości mogła być tak tradycyjna, jak twierdzą przekazy. Wydaje się wszakże, że w tym nurtie grecka astronomia nie przedstawiała sobą nic szczególnego.

Przejmuszaj wreszcie do kwestii gnomona i roli milicyjskich filozofów w upowszechnianiu oraz rozwieźnię sposobów użycia tego przyrządu.

Pierwsza wzmianka na ten dotyczący hérodota, który pisze, że o ile sztuki miernicze wynalezione w Egipcie (stąd trafia do Grecji), o tyle polos i gnomen oraz podział dnia na dwanaście godzin Grecy przejęli od Babilończyków ([13],[11]), a zaznaczają na uwagę dwie rzeczy. Pierwsza, to fakt, że wymienione narzędzia były w czasach Herodota na tyle rozwojowe, że laik, jakim był autor „Dzieł” uważał, że warto o nich pisać, a co więcej mogło to czynić bez żadnych dodatkowych objaśnień. Po drugie, użycie to wyraźnie wiązało się z geometrią (lub geometria). Te dwa elementy wydają się ważniejsze od zapisanego kierunku zapałczynienia – Babilonii. Sam bowiem fakt, że informacja o nim znajduje się w kontekście wątpliwych uwag o egipskim pochodzeniu geometrii, każe również tę informację traktować ostrożnie.

Jest to zresztą jedna z dwóch nitek greckiej tradycji, Druga wynalazek gnomona wyraźnie przypisuje jońskim filozofom. Zwykle wymieniany jest Anaksymander. Jak pisze Diogenes Laertios, był on tym, kto „pierwszy wynalazł zegar słoneczny i umieścił go, jak stwierdza Favorinus w „Historiach rozmaitych”, w odpowiednim miejscu w Lacedemonie; zegar wskazywał przesilenia i zrównania dnia z nocą, a jego tarcza oznaczała była cyframi” ([5],[11],1). Wprawdzie tłumaczenie w powyższym cytacie słowa „gnomon” jako „zegar słoneczny” nieco zaciemnia obraz, ale z dalszego opisu widać, że mamy tu do czynienia nie z prostym zegarem, ale złożonym instrumentem astronomicznym. Dalsze zdanie dotyczy innych dokonań Anaksymandra, ale jak zobaczymy w dalszym ciągu umieszczono go w tym właśnie miejscu nie musi być przypadkowe. Brzmi ono: „Stworzył też pierwszą mapę świata z konturami lądów i morza oraz pierwsze planetarium” ([5],[11],1,2).

Tyle na interesujące nas temat piaszczyste Diogenes Laertios. Późniejsze źródła (por. [35], s.38 – 38) dodają mamo istotne szczegóły do tych kilku zdań, które być może oddają jakąś dawniejszą tradycję. Jednakże tradycja ta nie była chyba jednoznaczna, skoro wcześniejszy od Diogenesa Plineusz Starzy wynalazek gnomona i znieniesienie go w Sparcie przypisuje Anaksymandesowi ([28],[11], 186 – 187; por. [47], s.175). Sam Diogenes też nie jest konsekwentny, skoro skonstruowanie zegara słonecznego na wyspie Syros przypisuje Perekyszosewi, wraz z Talesem saliczanemu do legendarnych mędrzów ([5],[11],1,11,113).

To jednak nie wszystko, bowiem również twórcy szkoły filozofów jońskich, Talesewi przypisać można jeśli nie autorstwo gnomona, to istotne rozwinięcie wcześniejszych jego zastosowań. Legenda o pomiarze wysokości piramidy wyraźnie wskazuje na jego zainteresowania obserwacją i pomiarem długości.
i położenia cienia, co jest istotą badań za pomocą gnomona. Są zresztą i bardziej bezpośrednie informacje na ten temat. Otoż Diogenes Laertios wspomina o przypisywaniu Talesowi autorstwa dzieł o przesileniu i o zrównaniu dnia z nocą. Miał on (Tales) być tym, który „pierwszy odkrył bieg Słońca od zwrotnika do zwrotnika” i „odkrył pory roku i podzielił rok na 365 dni” (1, 127). Przypisywanie konułowiek moknięcia pór roku byłoby rzeczą co najmniej dziwną, ale osadzenie tego zagadnienia w kontekście określonego długości roku (problem, który powodził duże trudności w Egipcie i Babilonii) wskazuje o co naprawdę mogło tu chodzić. Byłyby to dokładne określenie początków pór roku, a więc dni zrównania i przesileni, być może – jak podkreśla A. Szabo – również innych nierównomiernego rozłożenia ([35], s. 119).

Z tym ważnym odkryciem można powiązać przypisywany Talesowi przez Proklosa wynik matematyczny. Pisze on, że „podział koła na dwie części przez średnicę został okazany, jak piszą, najpierw przez Talesa” ([30], 157, 10). Twierdzenie to mogło być wynikiem badań innowacyjnych przez odkryta nierówność półcic, stwierdzającą z nią trudności w budowaniu geometrii, wynikłym z nurtu ruchu Słońca. Cała ta problematyka wiąże się z obliczeniami kalendarzowymi. W Milecie początek roku przypadał w dniu zrównania jesiennego, który była później powinienej być wyznaczany z odpowiednich precyzji. Również w Spacie rok liczył od tego właśnie dnia. Nie było więc przypadku, że tam właśnie Anaksymander (lub Anaksyimenes) zawdzięczał zarówno przyrząd jak i wiedzę potrzebną do jego obsługi.

Sumując powyższe dane i pomocnicze niepewne autorstwo poszczególnych dokonań przyjść można, że filozofowie mięscy w V wieku zajmowali się intensywnie pomiarami za pomocą gnomona, wzniesieniu istoty w układzie w połowie faworyzując metodę pomiarów, rozszerzyli ich zakres i przyczyńili się do rozpowszechnienia tej wiedzy wśród Greków. Zasadniczy wkład Talesa i jego ucznów polegał na wyznaczaniu zwrotników i równań na ołtarz niebieskim (przypomnijmy, że na innym poziomie wyznaczali też oni bieguny), dokładniejszym określeniu dni zrównania i przesilenia.

Zdaniem A. Szabo, to właśnie Anaksymander miał być twórcą metody wyznaczania dnia równoczesne poprzez teoretyczne ustalenie położenia cienia gnomona w południe takiego dnia i późniejsze zaobserwowanie tego faktu. Metoda ta opiera się na prostym fakcie geometrycznym, że kierunek promieni słonecznych w południe dnia zrównania stanowi dwusieczna kąta między promieniami w południe dni zrównania. Jest to własność łatwa do odkrycia pod warunkiem, że w płaszczyźnie rozpatrywana są te same sąsiednie, w południe dnia zrównania. Jak się wydaje, Egipcjanie pojęcia tego nie znał. Operowali właśnie zrównaniem kąta (tzw. śród). Również w Babilonie pojęcie kąta nie było chyba znane. Pochodzące z VII wieku i przez to szczególnie dla nas ważne, podstawowe dla zrozumienia zakresu astronomii babilońskiej okresu tabliczki mulAPIN zawierają, między innymi, dane dotyczące stosunku długości cienia dla gnomona o jednostkowej długości dnia dnia równoczesnego. Nie ma w nich niczego, co kazaloby przypuszczać, że Babilończycy posługiwali się pojęciem kąta, przyznającym w wewnętrznym, w kontekście. Wręcz przeciwnie, dane wspomnianej tabliczki świadczą, że ich intuicje związane były bezpośrednie ze zmianą długości cienia, przy czym mieli o niej błędne wyobrażenie. Znana ta miała mieć ikonowy, charakter, który przysłużył się tylko do uproszczonych, a więc absurdalnych wniosków.

Tak więc jeśli joścy filozofowie istotnie znali przypisywaną im metodę, to nie mogli jej zaczerpnąć ani z egipskich ani babilońskich źródeł. Wkład Greków byłby więc orginalny, a że tak być mogło świadczą dodatkowo przypisywane Talesowi twierdzenia matematyczne, w których zasadniczą rolę odgrywa pojęcie kąta (twierdzenie o kątach w trójkącie równomiernym, twierdzenie o kątach wierzchołkowych, tzw. III cecha przestawania trójkątów – [21], s. 100). Można
Z nich wnosić, że było ono znane już Talesowi, co omawiano przez Szabó metodę czyni osiągalną dla mileckich filozofów. Dodajmy jeszcze, że obserwacje za pomocą polos, gdzie operowało się lukami kół (południków), nie zaś ich rzutami na płaszczyznę mogło unacznąć metodę opisaną przez Szabó.

Oczywiście z faktu, że jakąś metodą jest osiągalna nie wynika jeszcze, że osiągnięta została. Jest więc możliwe, że rozwinięcie metody wyznaczania równonocy (znanej już na pewno Hipparchowi w II w. p.n.e.) przypadło na okres późniejszy. Być może joścy filozofowie opracowali jakieś proste podejście. Można sobie wyobrażyć empiryczne wyznaczenie odpowiedniego stosunku w dniu leżącym dokładnie między dniami przesielenia. Zakończenie do \(\frac{1}{2} \) zmierzonego stosunku długości cienia do długości gnomona daje bardzo dobre przybliżenie odpowiedniej wartości dla Miletu (1.30), a doskonale dla Sparty (1.33). Może tu leży dodatkowy powód podróż po skonstruowanym przyrządem w to właśnie miejscu.

Zauważmy wszakże, że i to przypuszczenie prowadzi do ciekawych konsekwencji dla rozwoju greckiej myśli. Jeśli bowiem względnie dokładnie ustaleni dni równonocy byłyby kwietnią prawdziwości empirycznej, którą jak wiemy znaną na gotowych zegarach, to praktyka ta musiała prowadzić do szybszego rozwoju geografii geometrycznej. Stosunek, o którym była wyżej mowa jest bowiem nieznaczny innym jak cotangensem kąta określającego szerokość geograficzną danego miejsca. Zmienia się w zależności od tego, gdzie dokonujemy pomiarów. W przypadku greckich miast rozłożonych w pasie od 31°N (Naukratis) do 47°N (Tanais), wielkość tego zmienia się od 1.66 do 0.93. Rozbieżność tę mógł obserwować i sam Anaksynander jako uczestnik wyprawy kolonizacyjnej z Miletu (37°30′N) do Apollonii (42°30′N), co daje wyraźną zmianę stosunku długości gnomona do długości cienia w południe dnia srodkowania z 1.30 do 1.09.

Przypomnijmy też o wywodzącym się z obserwacji gnomona i z sferycznego modelu Wszechświata rodowód siatki kartograficznej na kuli ziemskiej. Biograms, południki, równoleżniki (szwaczka zwrotniki, równik, równoleżnik danej miejscowośc) są rzutami na powierzchnię kuli ziemskiej pewnych
punktów i linii poprowadzonych na sferze niebieskiej. Nanoszenie na kulę ziemską siatki kartograficznej było więc przenoszeniem na Ziemię ładu kosmicznego. Geometryczna geografia może więc być ogniwem pomiędzy kosmologią a miernictwem, potrzebnym do wyjaśniania genezy nazwy geometria. Używając sformułowania Arystofana (z 423 r. p.n.e.) A.Szabó dochodzi do wniosku, że w owym czasie astronomia i geometria „wspólnymi siłami dały do wymierzenia kuli ziemskiej” ([32], s.25). Podkreślony zwrot pochodzi z komedii „Phrontisterion”, w której wysyłana się pretensje geometrii do wymierzenia całej Ziemi, przy jej ważniejszej użyteczności w „normalnych” geodezyjnych pomiarach. Takie były pretensje geometrii w 423 r. p.n.e., takimi mogły być i 150 lat wcześniej.

Oczywiście byłoby nieporozumieniem przypisywanie tak dojrzałych koncepcji i spójnych konstrukcji teoretycznych pierwszym greckim filozofom (redemption.ratiz pierwszymi astronomami i matematykami). W ich poczynaniach można za to widzieć początki drogi prowadzącej ku wspomnianym wyżej koncepcjom i modelom. (Wraca się do tego tematu w innych partiach pracy [44]).

Przytoczone fakty i ich interpretacja świadczą o znaczeniu astronomii greckiej VI w. p.n.e. jako początku przyszłej, racjonalnej wiedzy, naskt w nowożytnym słowa tego znaczenia. Zakończmy więc ten artykuł kilkoma uwagami, które mogą ośmielić taką wymowę. Zwrócićmy więc uwagę, że wyznaczane przy pomocy gnomona dni równonocymy miały istotne znaczenie dla chronologii sakralnej. Sakralne znaczenie miały i inne pomiar, jak choćby zwykle określanie stron świata ([3],[4]). W samym gnomonie było też coś ze słupa wskazującego centrum świata (co przebywa z cytotowanej wypowiedzi Ptolemeusza), a może też wypierającego sklepienie niebieskie, występującego w licznych kosmologii plemiennych (por. [8], s.73 – 77). Jest więc on czymś w rodzaju pośrednika między makrokosmosem Wszechświat a mikrokosmosem pojedynczej polis (której ład przestrzenny miał wiele cech „przestrzeni sakralnej” w sensie Eliadego [8]). Z tą rolą gnomona zgodne jest określenia „złomacza”, będące jednym ze znaczeń greckiej jego nazwy.

Jak piszemy w [44] (rozdz. 3), przy zakładaniu nowej polis geometry poprzez swoje pomiary powtarzali w pewnym sensie akt kosmogeny: chaos niestrukturuwanej miejsca osiedlenia zamieniał w mikrokosmos przyszłej polis. Astronomiczne zajęcia geometrów czyniły z nich pośredników między makro- a mikrokosmosem. Ta pośrednia (i pośrednicząca) rola geometrii wydaje się nam czymś szczególnie godnym uwagi.

Literatura cytowana

4. Czarnowski S. Podział przestrzeni i jej rozgraniczenie w religii i w magii, tłum. N.Assoroobraj, tamże, s.221-236.
7. Duda R. Żarys rozwoju koncepcji przestrzeni, Žeszyty Naukowe Wyższej Szkoły Inżynierskiej w Opolu, 1987, nr 125 (Matematyka s.12), s.7-26
17. Ivins jr W.M. Art and Geometry, a Study in Space Intuition New York 1946
22. Lewis C.S. Odrzucony obraz. Wprowadzenie do literatury średniowiecznej i renesansowej, tłum. W.Ostrowski
30. Procli Diadochi in primum Euclidis Elementorum librum commentarii, ed. G.Friedlein, Leipzig 1873
32. Szabó A. Astronomische Messungen bei den Griechen im 5 Jahrhundert v.Chr. und ihr Instrument, Historia Scientiarum 1981, No 21, s.1-26
33. Szabó A. Strabon und Pythios – die geographische Breite von Marseille Zur Frühgeschichte der mathematischen Geographie, Historia Scientiarum, 1985, No 29, s.3-15
34. Szabó A. The Beginnings of Greek Mathematics, Dordrecht-Budapest 1978
35. Szabó A. Maula E. Enkliima Untersuchungen zur Frühgeschichte der griechischen Astronomie, Geographie und der Sehnsucht, Athen 1982
38. Waerden B.L. van der Die Anfange der Astronomie, Groningen 1965
40. Waerden B.L. van der Science Awakening, Groningen 1954
42. Waszkiewicz J. *Nauka o systemie kultury*, Prace Naukowo-Naukowe i Prognozy 1986 (w druku)
44. Waszkiewicz J. *Socjokulturowe problemy genezy matematyki*, cz.IV, Początki greckiej geometrii, Ośrodek Badań Prognozy Politechniki Wrocławskiej Raport SPR 171, Wrocław 1987
47. Winniczuk L. *Ludzie, zwyczaje i obyczaje starożytnjej Grecji i Rzymu*, t.I, Warszawa 1985 (wyd.2)

Wydano za zgodą Rektora
Wyższej Szkoły Rolniczo-Pedagogicznej
w Siedlcach

Wydawnictwa Uczelniane WSRP w Siedlcach

Wydanie II. Nakład 300 egz. Ark. wyd. 2.18. Ark. druk. 6.0.
Druk ukończono maj 1990 r.

Zamówienie nr 24/W/90 Cena 2.500 zł